Force-Based Cooperative Search Directions in Evolutionary Multi-objective Optimization
نویسندگان
چکیده
In order to approximate the set of Pareto optimal solutions, several evolutionary multi-objective optimization (EMO) algorithms transfer the multiobjective problem into several independent single-objective ones by means of scalarizing functions. The choice of the scalarizing functions’ underlying search directions, however, is typically problem-dependent and therefore difficult if no information about the problem characteristics are known before the search process. The goal of this paper is to present new ideas of how these search directions can be computed adaptively during the search process in a cooperative manner. Based on the idea of Newton’s law of universal gravitation, solutions attract and repel each other in the objective space. Several force-based EMO algorithms are proposed and compared experimentally on general bi-objective ρMNK landscapes with different objective correlations. It turns out that the new approach is easy to implement, fast, and competitive with respect to a (μ+ λ)-SMS-EMOA variant, in particular if the objectives show strong positive or negative correlations.
منابع مشابه
Multi-relay selection schemes based on evolutionary algorithm in cooperative relay networks
In cooperative relay networks, the selected relay nodes have great impact on the system performance. In this paper, a multi-relay selection schemes that consider both single objective and multi-objective are proposed based on evolutionary algorithms. First, the single-objective optimization problems of the best cooperative relay nodes selection for signal-to-noise ratio (SNR) maximization or po...
متن کاملA Hybrid MOEA/D-TS for Solving Multi-Objective Problems
In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...
متن کاملUsing composite ranking to select the most appropriate Multi-Criteria Decision Making (MCDM) method in the optimal operation of the Dam reservoir
In this study, the performance of the algorithms of whale, Differential evolutionary, crow search, and Gray Wolf optimization were evaluated to operate the Golestan Dam reservoir with the objective function of meeting downstream water needs. Also, after defining the objective function and its constraints, the convergence degree of the algorithms was compared with each other and with the absolut...
متن کاملSolving Multi-objective Optimal Control Problems of chemical processes using Hybrid Evolutionary Algorithm
Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. This paper applies an evolutionary optimization scheme, inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...
متن کاملCombined Economic and Emission Dispatch Solution Using Exchange Market Algorithm
This paper proposes the exchange market algorithm (EMA) to solve the combined economic and emission dispatch (CEED) problems in thermal power plants. The EMA is a new, robust and efficient algorithm to exploit the global optimum point in optimization problems. Existence of two seeking operators in EMA provides a high ability in exploiting global optimum point. In order to show the capabilities ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013